top of page

(101) Amide-Based Naphthotubes as Biomimetic Receptors for Acetal Protection and Other Substrates in Water via Noncovalent Interactions.

Zhou, H.; Pang, X.; Xie, X.; Phillips, D.*; Gong, H.*; Sessler, J.*; Jiang, W.

J. Am. Chem. Soc. 2024, 146 (50) 34842–34851

(100) Naphthopyran-based photoswitching for simpler chemical sensing and imaging using phase-sensitive mode.

Cheng, Y.; Wang, Y.; Zhai, J.; Xie, X.* 

Cell Reports Physical Science, 2024, 5 (9), 102167.

(99) 1, 3, 5–2, 4, 6‐Functionalized Benzene Molecular Cage: An Environmentally Responsive Scaffold that Supports Hierarchical Superstructures.

Pang, X.; Zhou, H.; Xie, X.; Jiang, W.; Yang, H.; Sessler, J.*; Y.; Gong* 

Angew. Chem. Int. Ed. 2024, e202407805.

(98) Tailorable optical properties of polymer nanodots for triple-mode fluorescence detection of nucleic acids.

Guo, C.; Cui, E.; Wang, M.; Liu, X.; Yu, Y.; Xie, X.*; Yang, D.* 

Chem. Commun., 2024, 60, 4942. 

(97) Ion-Selective Thermal Relaxation of Visible Light Photoswitchable Indole-hemithioindigo: Toward Chemical Sensing of Fluoride and Hydroxide Ions.

Zhang, W.; Cheng, Y.; Wang, Y.; Wu, Z.; Zhai, J.; Xie, X.*

Chem. Commun., 2024, 60, 4202-4205.

 

(96) Photoswitchable Temperature Nanosensors Based on the Chemical Kinetics of Photochromic Naphthopyran for Live Cell Imaging.

Cheng, Y.; Wu, J.; Cui, Y.; Zhai, J.; Wu, M.*; Xie, X.*

Anal. Chem., 2024, 96 (11), 4605-4611.

 

(95) Photoswitchable Chemical Sensing Based on the Colorimetric pH Response of Ring-Opened Naphthopyrans.

Zhang, W.; Cheng, Y.; Wu, M.*; Xie, X.*

Sens. Actuators B Chem., 2024, 407, 135475.

 

(94) Spectrally separated dual functional fluorescent nanosensors for subcellular lysosomal detection of hypochlorous acid and chloride.

Cui, Y.#; Wu, J.#; Zhai, J.;*, Wang, Y.; Xie, X.*

Sensors & Diagnostics, 2024, 3, 319.

 

(93) Near-Infrared Fluoride Sensing Nano-Optodes and Distance-Based Hydrogels Containing Aluminum-Phthalocyanine.

Wang, L.; Zhang, Y.; Wang, L.; Cheng, Y.; Yuan, D.*; Zhai, J.*; Xie, X.*

ACS Sens., 2023, 8, 11, 4384.

 

(92) Expanded single-color barcoding in microspheres with fluorescence anisotropy for multiplexed biochemical detection.

Huang, W.; Cheng, Y.; Zhai, J.; Qin, Y.; Zhang, W.; Xie, X.*

Analyst, 2023, 148, 4406.

 

(91) Proton-Coupled Photochromic Hemithioindigo: Toward Photoactivated Chemical Sensing and Imaging.

Li, J.#; Ma, X.#; Wang, Y.; Cheng, Y.; Qin, Y.; Zhai, J.; Xie, X.*

Anal. Chem. 2023, 95, 11664.

 

(90) Polymersome-based ion-selective nano-optodes containing ionophores.

Cui, Y.; Zhai, J.; Wang, Y.; Xie, X.*,

Sensors and Diagnostics, 2023 ,2, 1286. (Invited Article)

 

(89) A Tunable Colorimetric Carbon Dioxide Sensor Based on Ion‐Exchanger‐and Chromoionophore‐Doped Hydrogel.

Zhang, Y.; Du, X.; Zhai, J.*; Xie, X.*

Analysis & Sensing, 2023, 3, e202300002. (Invited Article, Front Cover)

 

(88) Visible light responsive photoacids for subcellular pH and temperature correlated fluorescence sensing.

Cheng, Y.; Ma, X.; Zhai, J.; Xie, X.*

Chem. Commun., 2023, 59, 1805.

 

(87) Molecular Electronic Coupling-Induced Photoacoustics for NIR-I/II Duplex in Vivo Imaging.

Chang, Z.; Liu, L.; Zhai, J.; Liu, C.; Wang, X.; Liu, C.*; Xie, X.*; Sun, Q.*

Chem. Mater., 2023, 35, 1335.

 

(86) Photoswitchable hemithioindigo inspired copper ion selective sensing with excellent selectivity and versatile operational modes.

Chen, Q.; Wang, Y.; Zhai, J.*; Xie, X.*

Sens. Actuators B Chem., 2023, 381, 133437.

 

(85) Surface PEGylation of ionophore-based microspheres enables determination of serum sodium and potassium ion concentration under flow cytometry.

Du, X.; Wang, R.; Zhai, J.; Xie, X.*

Anal. Bioanal. Chem., 2023, 415 (18), 4233-4243.

 

(84) Fluorescence Anisotropy as a Self-Referencing Readout for Ion-Selective Sensing and Imaging Using Homo-FRET between Chromoionophores.

Huang, W.; Guo, C.; Zhai, J.; Xie, X.*

Anal. Chem., 2022, 94, 9793.

 

(83) Phase transfer of fatty acids into ultrasmall nanospheres for colorimetric detection of lipase and albumin.

Guo, C.; Zhai, J.; Chen, Q.; Du, X.; Xie, X.*

Chem. Commun., 2022, 58, 5037.

 

(82) Photoswitch-Based Fluorescence Encoding of Microspheres in a Limited Spectral Window for Multiplexed Detection.

Guo, C.; Zhai, J.; Wang, Y.; Du, X.; Wang, Z.; Xie, X.*

Anal. Chem., 2022, 94, 1531.

 

(81) Ionophore-based ion-selective electrodes: signal transduction and amplification from potentiometry.

Zhai, J.*; Yuan, D.*; Xie, X.*

Sensors & Diagnostics, 2022, 1, 213. (Invited Article)

 

(80) Ionophore-Based Potassium Selective Fluorescent Organosilica Nano-Optodes Containing Covalently Attached Solvatochromic Dyes. (For a special issue honoring Prof. Otto. S. Wolfbeis.)

Zhang, Y.; Du, X.; Xie, X.*

Chemosensors, 2022, 10, 23.

 

(79) One-pot synthesized organosilica nanospheres for multiplexed fluorescent nanobarcoding and subcellular tracking.

Du, X.; Wang, Y.; Zhai, J.; Guo, C.; Zhang, Y.; Huang, W.; Ma, X.; Xie, X.*

Nanoscale, 2022, 14, 1787.

 

(78) Exploring ratiometric endolysosomal pH nanosensors with hydrophobic indicators responding at the nanoscale interface and multiple fluorescence resonance energy transfers.

Chen, Q.; Zhai, J.; Li, J.; Wang, Y.; Xie, X.*

Nano Res., 2022, 15, 3471.


 

(77) Perspective on fluorescence cell imaging with ionophore-based ion-selective nano-optodes. (Invited Article)

Du, X.; Li, N.; Chen, Q.; Wu, Z.*; Zhai, J.*; Xie, X.*

Biomicrofluidics, 2022, 16, 031301.

(76) Editorial: Chemical Sensors for Biomedical Use.

Xie, X.*; Citterio, D.*; Chumbimuni-Torres, K.*; Xue, M.*; Wang, X.* Frontiers in Chemistry, 2021, 9, 685563.

(75) Recent advance in dual-functional luminescent probes for reactive species and common biological ions. (Invited Review)

Li, J.; Xie, X.*

Anal. Bioanal. Chem., 2022, 414, 5087.

 

(74) Ruthenium bipyridine complexes as electrochemiluminescent transducers for ionophore-based ion-selective detection.

Tang, Y.; Zhai, J.*, Chen, Q.; Xie, X.*

Analyst, 2021,146, 6955.

 

(73) Enhanced sulfite-selective sensing and cell imaging with fluorescent nanoreactors containing a ratiometric lipid peroxidation sensor.

Li, J.; Ma, X.; Yang, W.; Guo, C.; Zhai, J.; Xie, X.*

Anal. Chem., 2021, 93, 11758.


 

(72) Colorimetric and fluorescent turn-on detection of chloride ions with ionophore and BODIPY: Evaluation with nanospheres and cellulose paper.

Yang, W.; Zhai, J.; Li, J.; Qin, Y.; Wu, Y.; Zhang, Y.; Xie, X.*

Anal. Chim. Act., 2021, 1175, 338752.


 

(71) Wash-free detection of nucleic acids with photoswitch-mediated fluorescence resonance energy transfer against optical background interference.

Guo, C.; Zhai, J.; Wang, Y.; Yang, W.; Xie, X.*

Anal. Chem., 2021, 93, 8128.


 

(70) Hydrogel-Based Optical Ion Sensors: Principles and Challenges for Point-of-Care Testing and Environmental Monitoring. (Invited Perspective)

Du, X.; Zhai, J.; Li, J.; Zhang, Y.; Li, N.; Xie, X.*

ACS Sens., 2021, 6, 1990.


 

(69) Single‐Component Chemical Nose with a Hemicyanine Probe for Pattern‐Based Discrimination of Metal Ions. (Invited Article)

Zhai, J.; Wu, Y.; Xie, X.*

Chin. J. Chem., 2021, 39, 1517.

 

(68) Ionophore-Based Ion-Selective Nanospheres Based on Monomer–Dimer Conversion in the Near-Infrared Region.

Deng, L.; Zhai, J.; Du, X.; Xie, X.*

ACS Sens., 2021, 6, 1279.


 

(67) Ion-Selective optodes: Alternative approaches for simplified fabrication and signaling. (Invited Review)

Du, X.; Xie, X.*

Sens. Actuators B Chem., 2021, 335, 129368.


 

(66) Potentiometric determination of the neurotransmitter acetylcholine with ion-selective electrodes containing oxatub[4]arenes as the ionophore.

Chen, Q.; Yang, L.; Li, D.; Zhai, J.*; Jiang, W.*; Xie, X.*

Sens. Actuators B Chem., 2021, 326, 128836.


 

(65) Dual functional luminescent nanoprobes for monitoring oxygen and chloride concentration changes in cells.

Li, J.; Zhai, J.; Wang, Y.; Yang, W.; Xie, X.*

Chem. Commun., 2020, 56, 14980.


 

(64) Distance-based detection of calcium ions with hydrogels entrapping exhaustive ion-selective nanoparticles.

Du, X.; Zhai, J.; Zeng, D.; Chen, F.*; Xie, X.*

Sens. Actuators B Chem., 2020, 319, 128300.


 

(63) Ionophore-based pH independent detection of ions utilizing aggregation-induced effects.

Wang, R.; Du, X.; Ma, X.; Zhai, J.; Xie, X.*

Analyst, 2020, 145, 3846.


 

(62) Direct Potentiometric Sensing of Anion Concentration (Not Activity).

Gao, W.; Xie, X.*, Bakker, E.*

ACS Sens., 2020, 5, 313.


 

(61) Ionophore-based ion-selective nanosensors from brush block copolymer nanodots.

Du, X.; Wang, R.; Zhai, J.; Li, X.; Xie, X.*

ACS Appl. Nano Mater., 2020, 3, 1, 782.


 

(60) The Hofmeister Anion Effect on Ionophore‐based Ion‐selective Nanospheres Containing Solvatochromic Dyes.

Li, X.; Zhai, J.; Xie, X.*

Electroanalysis, 2020, 32, 749.


 

(59) A solid‐state reference electrode based on a self‐referencing pulstrode.

Gao, W.; Zdrachek, E.; Xie, X.*, Bakker, E.*,

Angew. Chem. Int. Ed., 2020, 59, 2294.


 

(58) Rhodamine dye transfer from hydrogel to nanospheres for the chemical detection of potassium ions.

Yang, W.; Zhai, J.; Xie, X.*

Analyst, 2019, 144, 5617.


 

(57) Rapid equilibrated colorimetric detection of protamine and heparin: recognition at the nanoscale liquid–liquid interface.

Chen, Q.; Li, X.; Wang, R.; Zeng, F.; Zhai, J.*, Xie, X.*

Anal. Chem., 2019, 91, 10390.


 

(56) Chemiluminescent ion sensing platform based on ionophores.

Deng, L.; Zhai, J.; Xie, X.*

Anal. Chem., 2019, 91, 8638.


 

(55) Distance and color change based hydrogel sensor for visual quantitative determination of buffer concentrations.

Wang, R.; Du, X.; Zhai, J.; Xie, X.*

ACS Sens., 2019, 4, 1017.


 

(54) Electrogenerated chemiluminescence for chronopotentiometric sensors.

Gao, W.; Jeanneret, S.; Yuan, D.; Cherubini, T.; Wang, L.; Xie, X.*, Bakker, E.*,

Anal. Chem., 2019, 91, 4889.


 

(53) A rapid point-of-care optical ion sensing platform based on target-induced dye release from smart hydrogels.

Du, X.; Huang, M.; Wang, R.; Zhai, J.; Xie, X.*

Chem. Commun., 2019, 55, 1774.


 

(52) Graphene Quantum Dots Integrated in Ionophore-Based Fluorescent Nanosensors for Na+ and K+.

Wang, R.; Du, X.; Wu, Y.; Zhai, J; Xie, X.*

ACS Sens., 2018, 3, 2408.


 

(51) Electrochemical-to-optical signal transduction for ion-selective electrodes with light-emitting diodes.

Zhai, J.; Yang, L.; Du, X.; Xie, X.*

Anal. Chem., 2018, 90, 12791.


 

(50) Colorimetric Calcium Probe with Comparison to an Ion-Selective Optode.

Zhu, C.; Huang, M.; Lan, J.; Chung, L. W.; Li, L.*; Xie, X.*

ACS Omega, 2018, 3, 12476.


 

(49) A plasticizer-free miniaturized optical ion sensing platform with ionophores and silicon-based particles.

Du, X.; Yang, L.; Hu, W.; Wang, R.; Zhai, J.; Xie, X.*

Anal. Chem., 2018, 90, 5818.


 

(48) Ionophore‐based Heterogeneous Calcium Optical Titration.

Zhai, J.; Zhu, C.; Peng, X.; Xie, X.*

Electroanalysis, 2018, 30, 705.


 

(47) Non-equilibrium diffusion controlled ion-selective optical sensor for blood potassium determination.

Du, X.; Xie, X.*

ACS Sens., 2017, 2, 1410.


 

(46) Thermochromic Ion-Exchange Micelles Containing H+ Chromoionophores.

Du, X.; Zhu, C.; Xie, X.*

Langmuir, 2017, 33, 5910.


 

(45) Renovating the chromoionophores and detection modes in carrier-based ion-selective optical sensors.

Xie, X.*

Anal. Bioanal. Chem., 2016, 408, 2717.


 

(44) Shrinking Ion-Selective Sensors for Success.

Bakker, E*, and Xie, X.*

The Analytical Scientist, 2014, 09/23/2014.


 

(43) Determination of pKa Values of Hydrophobic Colorimetric pH Sensitive Probes in Nanospheres.

Xie, X.*; Zhai, J.; Jarolimova, Z.; Bakker, E.*

Anal. Chem., 2016, 88, 3015.


 

(42) Ion-selective optical nanosensors based on solvatochromic dyes of different lipophilicity: from bulk partitioning to interfacial accumulation.

Xie, X.*; Szilagyi, I; Zhai, J.; Wang, L.; Bakker, E.*

ACS Sens., 2016, 1, 516.


 

(41) Charged solvatochromic dyes as signal transducers in pH independent fluorescent and colorimetric ion selective nanosensors.

Xie, X.*; Gutierrez, A.; Trofimov, V.; Szilagyi, I.; Soldati, T.; Bakker, E.*

Anal. Chem., 2015, 87, 9954.


 

(40) Potassium sensitive optical nanosensors containing voltage sensitive dyes.

Xie, X.*; Gutierrez, A.; Trofimov, V.; Szilagyi, I.; Soldati, T.; Bakker, E.*

Chimia, 2015, 69, 196.


 

(39) Ion selective optodes: from the bulk to the nanoscale.

Xie, X.*; Bakker, E.*

Anal. Bioanal. Chem., 2015, 407, 3899.


 

(38) Determination of effective stability constants of ion-carrier complexes in ion selective nanospheres with charged solvatochromic dyes.

Xie, X.*; Bakker, E.*

Anal. Chem., 2015, 87, 11587.


 

(37) Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane.

Xie, X.; Crespo, G. A.; Mistlberger, G.; Bakker, E.*

Nat. Chem., 2014, 6, 202.


 

(36) Potentiometric response from ion-selective nanospheres with voltage-sensitive dyes.

Xie, X.; Zhai, J.; Bakker, E.*

J. Am. Chem. Soc., 2014, 136, 16465.


 

(35) Photoelectric conversion based on proton-coupled electron transfer reactions.

Xie, X.*; Bakker, E.*

J. Am. Chem. Soc., 2014, 136, 7857.


 

(34) Ionophore-based ion-selective optical nanosensors operating in exhaustive sensing mode.

Xie, X.; Zhai, J.; Crespo, G. A.; Bakker, E.*

Anal. Chem., 2014, 86, 8770.


 

(33) pH independent nano-optode sensors based on exhaustive ion-selective nanospheres.

Xie, X.; Zhai, J.; Bakker, E.*

Anal. Chem., 2014, 86, 2853.


 

(32) Potassium-selective optical microsensors based on surface modified polystyrene microspheres.

Xie, X.*; Crespo, G. A.; Zhai, J.; Szilagyi, I.; Bakker, E.*

Chem. Commun., 2014, 50, 4592.


 

(31) Light-controlled reversible release and uptake of potassium ions from ion-exchanging nanospheres.

Xie, X.*; Bakker, E.*

ACS Appl. Mater. Interfaces, 2014, 6, 2666.


 

(30) Creating electrochemical gradients by light: From bio-inspired concepts to photoelectric conversion.

Xie, X.*; Bakker, E.*

Phys. Chem. Chem. Phys., 2014, 16, 19781.


 

(29) Visible light induced photoacid generation within plasticized PVC membranes for copper (II) ion extraction.

Xie, X.; Mistlberger, G.; Bakker, E.*

Sens. Actuators B Chem., 2014, 204, 807.


 

(28) Detecting and manipulating ions.

Xie, X.*; Bakker, E.*

Q&More (Spotlight on: Bioanalytics | Ion Sensors), 2014, 02.14.


 

(27) Ultrasmall fluorescent ion-exchanging nanospheres containing selective ionophores.

Xie, X.; Mistlberger, G.; Bakker, E.*

Anal. Chem., 2013, 85, 9932.


 

(26) Oxazinoindolines as Fluorescent H+ Turn-On Chromoionophores For Optical and Electrochemical Ion Sensors.

Xie, X.; Crespo, G. A.; Bakker, E.*

Anal. Chem., 2013, 85, 7434.


 

(25) Non-Severinghaus Potentiometric Dissolved CO2 Sensor with Improved Characteristics.

Xie, X.; Bakker, E.*

Anal. Chem., 2013, 85, 1332.


 

(24) Direct optical carbon dioxide sensing based on a polymeric film doped with a selective molecular tweezer-type ionophore.

Xie, X.; Pawlak, M.; Tercier-Waeber, M. L.; Bakker, E.*

Anal. Chem., 2012, 84, 3163.


 

(23) Reversible photodynamic chloride-selective sensor based on photochromic spiropyran.

Xie, X.; Mistlberger, G.; Bakker, E.*

J. Am. Chem. Soc., 2012, 134, 16929.


 

(22) A dual functional near infrared fluorescent probe based on the bodipy fluorophores for selective detection of copper and aluminum ions.

Xie, X.; Qin, Y.*

Sens. Actuators B Chem., 2011, 156, 213.


 

(21) Rhodamine-based ratiometric fluorescent ion-selective bulk optodes.

Xie, X.; Li, X.; Ge, Y.; Qin, Y.*; Chen, H.-Y.

Sens. Actuators B Chem., 2010, 151, 71.

(20) Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations.

Querard, J.; Zhang, R.; Kelemen, Z.; Plamont, M.-A.; Xie, X.; Chouket, R.; Roemgens, I.; Korepina, Y.; Albright, S.; Ipendey, E.; Volovitch, M.; Sladitschek, H. L.; Neveu, P.; Gissot, L.; Gautier, A. Faure, J.-D.; Croquette, V.; Le Sausx, T.*; Jullien, L.*

Nat. Commun., 2017, 8, 969.


 

(19) Expanding benzothiadiazole-tetrazole photo-triggered click reaction with chloride ion into reaction-based chloride ion receptor.

Wang, Y.; Fan, J.; Li, M.; Xie, X.; Meng, X.; Ding, J.*; Hou, H.*

Dyes Pigm., 2021, 191, 109345.

 

(18) Simplified fabrication for ion-selective optical emulsion sensor with hydrophobic solvatochromic dye transducer: a cautionary tale.

Wang, L.; Sadler, S.; Cao, T.; Xie, X.; Von Filseck, J. M.; Bakker, E.*

Anal. Chem., 2019, 91, 8973.


 

(17) Naphthocage: A flexible yet extremely strong binder for singly charged organic cations.

Jia, F.; Hupatz, H.; Yang, L.; Schröder, H. V.; Li, D.; Xin, S.; Lentz, D.; Witte, F.; Xie, X.; Paulus, B.; Schalley, C. A.*, Jiang, W.*

J. Am. Chem. Soc., 2019, 141, 4468.


 

(16) Surface‐Doped Polystyrene Microsensors Containing Lipophilic Solvatochromic Dye Transducers.

Wang, L.; Xie, X.; Cao, T.; Bosset, J.; Bakker, E.*

Eur. J. Chem., 2018, 24, 1.


 

(15) Agarose hydrogel containing immobilized pH buffer microemulsion without increasing permselectivity.

Coll Crespi, M.; Crespo, G. A.; Xie, X.; Touilloux, R.; Tercier-Waeber, M.; Bakker, E*.

Talanta, 2018, 177, 191.


 

(14) Ionophore-based titrimetric detection of alkali metal ions in serum.

Zhai, J.; Xie, X.; Cherubini, T.; Bakker, E.*

ACS Sens., 2017, 2, 606.


 

(13) Reversible pH-independent optical potassium sensor with lipophilic solvatochromic dye transducer on surface modified microporous nylon.

Wang, L.; Xie, X.; Zhai, J.; Bakker, E.*

Chem. Commun., 2016, 52, 14254.


 

(12) Ion-selective optode nanospheres as heterogeneous indicator reagents in complexometric titrations.

Zhai, J.; Xie, X.; Bakker, E.*

Anal. Chem., 2015, 87, 2827.


 

(11) Anion-exchange nanospheres as titration reagents for anionic analytes.

Zhai, J.; Xie, X.; Bakker, E.*

Anal. Chem., 2015, 87, 8347.


 

(10) Solvatochromic dyes as pH-independent indicators for ionophore nanosphere-based complexometric titrations.

Zhai, J.; Xie, X.; Bakker, E.*

Anal. Chem., 2015, 87, 12318.


 

(9) Ionophore-based ion-exchange emulsions as novel class of complexometric titration reagents.

Zhai, J.; Xie, X.; Bakker, E.*

Chem. Commun., 2014, 50, 12659.


 

(8) Advancing Schwarzenbach's Complexometry: Nano-scale Titration Reagents Based on Heterogeneous Reactions: Highlights of Analytical Chemistry in Switzerland.

Zhai, J.; Xie, X.; Bakker, E.*

Chimia, 2014, 68, 899.


 

(7) Chronopotentiometric carbonate detection with all-solid-state ionophore-based electrodes.

Jarolimova, Z.; Crespo, G. A.; Xie, X.; Ghahraman Afshar, M.; Pawlak, M.; Bakker, E.*

Anal. Chem., 2014, 86, 6307.


 

(6) Environmental sensing of aquatic systems at the University of Geneva.

Bakker, E.* Tercier-Waeber, M. Cherubini, T. Crespi, M. C. Crespo, G. A.; Cuartero, M.; Afshar, M. G.; Jarolimova, Z.; Jeanneret, S.; Mongin, S.; Néel, B.; Pankratova, N.; Touilloux, R.; Xie, X.; Zhai, J.

Chimia, 2014, 68, 772.


 

(5) Direct alkalinity detection with ion-selective chronopotentiometry.

Afshar, M. G.; Crespo, G. A.; Xie, X.; Bakker, E.*

Anal. Chem., 2014, 86, 6461.


 

(4) Photoresponsive ion extraction/release systems: dynamic ion optodes for calcium and sodium based on photochromic spiropyran.

Mistlberger, G.*; Xie, X.; Pawlak, M.; Crespo, G. A.; Bakker, E.*

Anal. Chem., 2013, 85, 2983.


 

(3) Modern chemical ion sensor concepts based on electrochemically and optically triggered phase transfer.

Bakker, E.*; Grygolowicz-Pawlak, E.; Xie, X.; Mistlberger, G.; Crespo, G.; Afshar, M.; Néel, B.; Shvarev, A.

Anal. Chem., 2012, 66, 479.

 

(2) Photodynamic ion sensor systems with spiropyran: photoactivated acidity changes in plasticized poly (vinyl chloride).

Mistlberger, G.; Crespo, G. A.; Xie, X.; Bakker, E.*

Chem. Commun., 2012, 48, 5662.


 

(1) Advancing membrane electrodes and optical ion sensors.

Bakker, E.*; Crespo, G.; Grygolowicz-Pawlak, E.; Mistlberger, G.; Pawlak, M.; Xie, X.

Chimia, 2011, 65, 141.


Publication List
bottom of page