Zhou, H.; Pang, X.; Xie, X.; Phillips, D.*; Gong, H.*; Sessler, J.*; Jiang, W.
J. Am. Chem. Soc. 2024, 146 (50) 34842–34851
(100) Naphthopyran-based photoswitching for simpler chemical sensing and imaging using phase-sensitive mode.
Cheng, Y.; Wang, Y.; Zhai, J.; Xie, X.*
Cell Reports Physical Science, 2024, 5 (9), 102167.
Pang, X.; Zhou, H.; Xie, X.; Jiang, W.; Yang, H.; Sessler, J.*; Y.; Gong*
Angew. Chem. Int. Ed. 2024, e202407805.
Guo, C.; Cui, E.; Wang, M.; Liu, X.; Yu, Y.; Xie, X.*; Yang, D.*
Chem. Commun., 2024, 60, 4942.
(97) Ion-Selective Thermal Relaxation of Visible Light Photoswitchable Indole-hemithioindigo: Toward Chemical Sensing of Fluoride and Hydroxide Ions.
Zhang, W.; Cheng, Y.; Wang, Y.; Wu, Z.; Zhai, J.; Xie, X.*
Chem. Commun., 2024, 60, 4202-4205.
(96) Photoswitchable Temperature Nanosensors Based on the Chemical Kinetics of Photochromic Naphthopyran for Live Cell Imaging.
Cheng, Y.; Wu, J.; Cui, Y.; Zhai, J.; Wu, M.*; Xie, X.*
Anal. Chem., 2024, 96 (11), 4605-4611.
(95) Photoswitchable Chemical Sensing Based on the Colorimetric pH Response of Ring-Opened Naphthopyrans.
Zhang, W.; Cheng, Y.; Wu, M.*; Xie, X.*
Sens. Actuators B Chem., 2024, 407, 135475.
(94) Spectrally separated dual functional fluorescent nanosensors for subcellular lysosomal detection of hypochlorous acid and chloride.
Cui, Y.#; Wu, J.#; Zhai, J.;*, Wang, Y.; Xie, X.*
Sensors & Diagnostics, 2024, 3, 319.
(93) Near-Infrared Fluoride Sensing Nano-Optodes and Distance-Based Hydrogels Containing Aluminum-Phthalocyanine.
Wang, L.; Zhang, Y.; Wang, L.; Cheng, Y.; Yuan, D.*; Zhai, J.*; Xie, X.*
ACS Sens., 2023, 8, 11, 4384.
(92) Expanded single-color barcoding in microspheres with fluorescence anisotropy for multiplexed biochemical detection.
Huang, W.; Cheng, Y.; Zhai, J.; Qin, Y.; Zhang, W.; Xie, X.*
Analyst, 2023, 148, 4406.
(91) Proton-Coupled Photochromic Hemithioindigo: Toward Photoactivated Chemical Sensing and Imaging.
Li, J.#; Ma, X.#; Wang, Y.; Cheng, Y.; Qin, Y.; Zhai, J.; Xie, X.*
Anal. Chem. 2023, 95, 11664.
(90) Polymersome-based ion-selective nano-optodes containing ionophores.
Cui, Y.; Zhai, J.; Wang, Y.; Xie, X.*,
Sensors and Diagnostics, 2023 ,2, 1286. (Invited Article)
(89) A Tunable Colorimetric Carbon Dioxide Sensor Based on Ion‐Exchanger‐and Chromoionophore‐Doped Hydrogel.
Zhang, Y.; Du, X.; Zhai, J.*; Xie, X.*
Analysis & Sensing, 2023, 3, e202300002. (Invited Article, Front Cover)
(88) Visible light responsive photoacids for subcellular pH and temperature correlated fluorescence sensing.
Cheng, Y.; Ma, X.; Zhai, J.; Xie, X.*
Chem. Commun., 2023, 59, 1805.
(87) Molecular Electronic Coupling-Induced Photoacoustics for NIR-I/II Duplex in Vivo Imaging.
Chang, Z.; Liu, L.; Zhai, J.; Liu, C.; Wang, X.; Liu, C.*; Xie, X.*; Sun, Q.*
Chem. Mater., 2023, 35, 1335.
(86) Photoswitchable hemithioindigo inspired copper ion selective sensing with excellent selectivity and versatile operational modes.
Chen, Q.; Wang, Y.; Zhai, J.*; Xie, X.*
Sens. Actuators B Chem., 2023, 381, 133437.
(85) Surface PEGylation of ionophore-based microspheres enables determination of serum sodium and potassium ion concentration under flow cytometry.
Du, X.; Wang, R.; Zhai, J.; Xie, X.*
Anal. Bioanal. Chem., 2023, 415 (18), 4233-4243.
(84) Fluorescence Anisotropy as a Self-Referencing Readout for Ion-Selective Sensing and Imaging Using Homo-FRET between Chromoionophores.
Huang, W.; Guo, C.; Zhai, J.; Xie, X.*
Anal. Chem., 2022, 94, 9793.
(83) Phase transfer of fatty acids into ultrasmall nanospheres for colorimetric detection of lipase and albumin.
Guo, C.; Zhai, J.; Chen, Q.; Du, X.; Xie, X.*
Chem. Commun., 2022, 58, 5037.
(82) Photoswitch-Based Fluorescence Encoding of Microspheres in a Limited Spectral Window for Multiplexed Detection.
Guo, C.; Zhai, J.; Wang, Y.; Du, X.; Wang, Z.; Xie, X.*
Anal. Chem., 2022, 94, 1531.
(81) Ionophore-based ion-selective electrodes: signal transduction and amplification from potentiometry.
Zhai, J.*; Yuan, D.*; Xie, X.*
Sensors & Diagnostics, 2022, 1, 213. (Invited Article)
(80) Ionophore-Based Potassium Selective Fluorescent Organosilica Nano-Optodes Containing Covalently Attached Solvatochromic Dyes. (For a special issue honoring Prof. Otto. S. Wolfbeis.)
Zhang, Y.; Du, X.; Xie, X.*
Chemosensors, 2022, 10, 23.
(79) One-pot synthesized organosilica nanospheres for multiplexed fluorescent nanobarcoding and subcellular tracking.
Du, X.; Wang, Y.; Zhai, J.; Guo, C.; Zhang, Y.; Huang, W.; Ma, X.; Xie, X.*
Nanoscale, 2022, 14, 1787.
(78) Exploring ratiometric endolysosomal pH nanosensors with hydrophobic indicators responding at the nanoscale interface and multiple fluorescence resonance energy transfers.
Chen, Q.; Zhai, J.; Li, J.; Wang, Y.; Xie, X.*
Nano Res., 2022, 15, 3471.
(77) Perspective on fluorescence cell imaging with ionophore-based ion-selective nano-optodes. (Invited Article)
Du, X.; Li, N.; Chen, Q.; Wu, Z.*; Zhai, J.*; Xie, X.*
Biomicrofluidics, 2022, 16, 031301.
(76) Editorial: Chemical Sensors for Biomedical Use.
Xie, X.*; Citterio, D.*; Chumbimuni-Torres, K.*; Xue, M.*; Wang, X.* Frontiers in Chemistry, 2021, 9, 685563.
(75) Recent advance in dual-functional luminescent probes for reactive species and common biological ions. (Invited Review)
Li, J.; Xie, X.*
Anal. Bioanal. Chem., 2022, 414, 5087.
(74) Ruthenium bipyridine complexes as electrochemiluminescent transducers for ionophore-based ion-selective detection.
Tang, Y.; Zhai, J.*, Chen, Q.; Xie, X.*
Analyst, 2021,146, 6955.
(73) Enhanced sulfite-selective sensing and cell imaging with fluorescent nanoreactors containing a ratiometric lipid peroxidation sensor.
Li, J.; Ma, X.; Yang, W.; Guo, C.; Zhai, J.; Xie, X.*
Anal. Chem., 2021, 93, 11758.
(72) Colorimetric and fluorescent turn-on detection of chloride ions with ionophore and BODIPY: Evaluation with nanospheres and cellulose paper.
Yang, W.; Zhai, J.; Li, J.; Qin, Y.; Wu, Y.; Zhang, Y.; Xie, X.*
Anal. Chim. Act., 2021, 1175, 338752.
(71) Wash-free detection of nucleic acids with photoswitch-mediated fluorescence resonance energy transfer against optical background interference.
Guo, C.; Zhai, J.; Wang, Y.; Yang, W.; Xie, X.*
Anal. Chem., 2021, 93, 8128.
(70) Hydrogel-Based Optical Ion Sensors: Principles and Challenges for Point-of-Care Testing and Environmental Monitoring. (Invited Perspective)
Du, X.; Zhai, J.; Li, J.; Zhang, Y.; Li, N.; Xie, X.*
ACS Sens., 2021, 6, 1990.
(69) Single‐Component Chemical Nose with a Hemicyanine Probe for Pattern‐Based Discrimination of Metal Ions. (Invited Article)
Zhai, J.; Wu, Y.; Xie, X.*
Chin. J. Chem., 2021, 39, 1517.
(68) Ionophore-Based Ion-Selective Nanospheres Based on Monomer–Dimer Conversion in the Near-Infrared Region.
Deng, L.; Zhai, J.; Du, X.; Xie, X.*
ACS Sens., 2021, 6, 1279.
(67) Ion-Selective optodes: Alternative approaches for simplified fabrication and signaling. (Invited Review)
Du, X.; Xie, X.*
Sens. Actuators B Chem., 2021, 335, 129368.
(66) Potentiometric determination of the neurotransmitter acetylcholine with ion-selective electrodes containing oxatub[4]arenes as the ionophore.
Chen, Q.; Yang, L.; Li, D.; Zhai, J.*; Jiang, W.*; Xie, X.*
Sens. Actuators B Chem., 2021, 326, 128836.
(65) Dual functional luminescent nanoprobes for monitoring oxygen and chloride concentration changes in cells.
Li, J.; Zhai, J.; Wang, Y.; Yang, W.; Xie, X.*
Chem. Commun., 2020, 56, 14980.
(64) Distance-based detection of calcium ions with hydrogels entrapping exhaustive ion-selective nanoparticles.
Du, X.; Zhai, J.; Zeng, D.; Chen, F.*; Xie, X.*
Sens. Actuators B Chem., 2020, 319, 128300.
(63) Ionophore-based pH independent detection of ions utilizing aggregation-induced effects.
Wang, R.; Du, X.; Ma, X.; Zhai, J.; Xie, X.*
Analyst, 2020, 145, 3846.
(62) Direct Potentiometric Sensing of Anion Concentration (Not Activity).
Gao, W.; Xie, X.*, Bakker, E.*
ACS Sens., 2020, 5, 313.
(61) Ionophore-based ion-selective nanosensors from brush block copolymer nanodots.
Du, X.; Wang, R.; Zhai, J.; Li, X.; Xie, X.*
ACS Appl. Nano Mater., 2020, 3, 1, 782.
(60) The Hofmeister Anion Effect on Ionophore‐based Ion‐selective Nanospheres Containing Solvatochromic Dyes.
Li, X.; Zhai, J.; Xie, X.*
Electroanalysis, 2020, 32, 749.
(59) A solid‐state reference electrode based on a self‐referencing pulstrode.
Gao, W.; Zdrachek, E.; Xie, X.*, Bakker, E.*,
Angew. Chem. Int. Ed., 2020, 59, 2294.
(58) Rhodamine dye transfer from hydrogel to nanospheres for the chemical detection of potassium ions.
Yang, W.; Zhai, J.; Xie, X.*
Analyst, 2019, 144, 5617.
(57) Rapid equilibrated colorimetric detection of protamine and heparin: recognition at the nanoscale liquid–liquid interface.
Chen, Q.; Li, X.; Wang, R.; Zeng, F.; Zhai, J.*, Xie, X.*
Anal. Chem., 2019, 91, 10390.
(56) Chemiluminescent ion sensing platform based on ionophores.
Deng, L.; Zhai, J.; Xie, X.*
Anal. Chem., 2019, 91, 8638.
(55) Distance and color change based hydrogel sensor for visual quantitative determination of buffer concentrations.
Wang, R.; Du, X.; Zhai, J.; Xie, X.*
ACS Sens., 2019, 4, 1017.
(54) Electrogenerated chemiluminescence for chronopotentiometric sensors.
Gao, W.; Jeanneret, S.; Yuan, D.; Cherubini, T.; Wang, L.; Xie, X.*, Bakker, E.*,
Anal. Chem., 2019, 91, 4889.
(53) A rapid point-of-care optical ion sensing platform based on target-induced dye release from smart hydrogels.
Du, X.; Huang, M.; Wang, R.; Zhai, J.; Xie, X.*
Chem. Commun., 2019, 55, 1774.
(52) Graphene Quantum Dots Integrated in Ionophore-Based Fluorescent Nanosensors for Na+ and K+.
Wang, R.; Du, X.; Wu, Y.; Zhai, J; Xie, X.*
ACS Sens., 2018, 3, 2408.
(51) Electrochemical-to-optical signal transduction for ion-selective electrodes with light-emitting diodes.
Zhai, J.; Yang, L.; Du, X.; Xie, X.*
Anal. Chem., 2018, 90, 12791.
(50) Colorimetric Calcium Probe with Comparison to an Ion-Selective Optode.
Zhu, C.; Huang, M.; Lan, J.; Chung, L. W.; Li, L.*; Xie, X.*
ACS Omega, 2018, 3, 12476.
(49) A plasticizer-free miniaturized optical ion sensing platform with ionophores and silicon-based particles.
Du, X.; Yang, L.; Hu, W.; Wang, R.; Zhai, J.; Xie, X.*
Anal. Chem., 2018, 90, 5818.
(48) Ionophore‐based Heterogeneous Calcium Optical Titration.
Zhai, J.; Zhu, C.; Peng, X.; Xie, X.*
Electroanalysis, 2018, 30, 705.
(47) Non-equilibrium diffusion controlled ion-selective optical sensor for blood potassium determination.
Du, X.; Xie, X.*
ACS Sens., 2017, 2, 1410.
(46) Thermochromic Ion-Exchange Micelles Containing H+ Chromoionophores.
Du, X.; Zhu, C.; Xie, X.*
Langmuir, 2017, 33, 5910.
(45) Renovating the chromoionophores and detection modes in carrier-based ion-selective optical sensors.
Xie, X.*
Anal. Bioanal. Chem., 2016, 408, 2717.
(44) Shrinking Ion-Selective Sensors for Success.
Bakker, E*, and Xie, X.*
The Analytical Scientist, 2014, 09/23/2014.
(43) Determination of pKa Values of Hydrophobic Colorimetric pH Sensitive Probes in Nanospheres.
Xie, X.*; Zhai, J.; Jarolimova, Z.; Bakker, E.*
Anal. Chem., 2016, 88, 3015.
(42) Ion-selective optical nanosensors based on solvatochromic dyes of different lipophilicity: from bulk partitioning to interfacial accumulation.
Xie, X.*; Szilagyi, I; Zhai, J.; Wang, L.; Bakker, E.*
ACS Sens., 2016, 1, 516.
(41) Charged solvatochromic dyes as signal transducers in pH independent fluorescent and colorimetric ion selective nanosensors.
Xie, X.*; Gutierrez, A.; Trofimov, V.; Szilagyi, I.; Soldati, T.; Bakker, E.*
Anal. Chem., 2015, 87, 9954.
(40) Potassium sensitive optical nanosensors containing voltage sensitive dyes.
Xie, X.*; Gutierrez, A.; Trofimov, V.; Szilagyi, I.; Soldati, T.; Bakker, E.*
Chimia, 2015, 69, 196.
(39) Ion selective optodes: from the bulk to the nanoscale.
Xie, X.*; Bakker, E.*
Anal. Bioanal. Chem., 2015, 407, 3899.
(38) Determination of effective stability constants of ion-carrier complexes in ion selective nanospheres with charged solvatochromic dyes.
Xie, X.*; Bakker, E.*
Anal. Chem., 2015, 87, 11587.
(37) Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane.
Xie, X.; Crespo, G. A.; Mistlberger, G.; Bakker, E.*
Nat. Chem., 2014, 6, 202.
(36) Potentiometric response from ion-selective nanospheres with voltage-sensitive dyes.
Xie, X.; Zhai, J.; Bakker, E.*
J. Am. Chem. Soc., 2014, 136, 16465.
(35) Photoelectric conversion based on proton-coupled electron transfer reactions.
Xie, X.*; Bakker, E.*
J. Am. Chem. Soc., 2014, 136, 7857.
(34) Ionophore-based ion-selective optical nanosensors operating in exhaustive sensing mode.
Xie, X.; Zhai, J.; Crespo, G. A.; Bakker, E.*
Anal. Chem., 2014, 86, 8770.
(33) pH independent nano-optode sensors based on exhaustive ion-selective nanospheres.
Xie, X.; Zhai, J.; Bakker, E.*
Anal. Chem., 2014, 86, 2853.
(32) Potassium-selective optical microsensors based on surface modified polystyrene microspheres.
Xie, X.*; Crespo, G. A.; Zhai, J.; Szilagyi, I.; Bakker, E.*
Chem. Commun., 2014, 50, 4592.
(31) Light-controlled reversible release and uptake of potassium ions from ion-exchanging nanospheres.
Xie, X.*; Bakker, E.*
ACS Appl. Mater. Interfaces, 2014, 6, 2666.
(30) Creating electrochemical gradients by light: From bio-inspired concepts to photoelectric conversion.
Xie, X.*; Bakker, E.*
Phys. Chem. Chem. Phys., 2014, 16, 19781.
(29) Visible light induced photoacid generation within plasticized PVC membranes for copper (II) ion extraction.
Xie, X.; Mistlberger, G.; Bakker, E.*
Sens. Actuators B Chem., 2014, 204, 807.
(28) Detecting and manipulating ions.
Xie, X.*; Bakker, E.*
Q&More (Spotlight on: Bioanalytics | Ion Sensors), 2014, 02.14.
(27) Ultrasmall fluorescent ion-exchanging nanospheres containing selective ionophores.
Xie, X.; Mistlberger, G.; Bakker, E.*
Anal. Chem., 2013, 85, 9932.
(26) Oxazinoindolines as Fluorescent H+ Turn-On Chromoionophores For Optical and Electrochemical Ion Sensors.
Xie, X.; Crespo, G. A.; Bakker, E.*
Anal. Chem., 2013, 85, 7434.
(25) Non-Severinghaus Potentiometric Dissolved CO2 Sensor with Improved Characteristics.
Xie, X.; Bakker, E.*
Anal. Chem., 2013, 85, 1332.
(24) Direct optical carbon dioxide sensing based on a polymeric film doped with a selective molecular tweezer-type ionophore.
Xie, X.; Pawlak, M.; Tercier-Waeber, M. L.; Bakker, E.*
Anal. Chem., 2012, 84, 3163.
(23) Reversible photodynamic chloride-selective sensor based on photochromic spiropyran.
Xie, X.; Mistlberger, G.; Bakker, E.*
J. Am. Chem. Soc., 2012, 134, 16929.
(22) A dual functional near infrared fluorescent probe based on the bodipy fluorophores for selective detection of copper and aluminum ions.
Xie, X.; Qin, Y.*
Sens. Actuators B Chem., 2011, 156, 213.
(21) Rhodamine-based ratiometric fluorescent ion-selective bulk optodes.
Xie, X.; Li, X.; Ge, Y.; Qin, Y.*; Chen, H.-Y.
Sens. Actuators B Chem., 2010, 151, 71.
(20) Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations.
Querard, J.; Zhang, R.; Kelemen, Z.; Plamont, M.-A.; Xie, X.; Chouket, R.; Roemgens, I.; Korepina, Y.; Albright, S.; Ipendey, E.; Volovitch, M.; Sladitschek, H. L.; Neveu, P.; Gissot, L.; Gautier, A. Faure, J.-D.; Croquette, V.; Le Sausx, T.*; Jullien, L.*
Nat. Commun., 2017, 8, 969.
Wang, Y.; Fan, J.; Li, M.; Xie, X.; Meng, X.; Ding, J.*; Hou, H.*
Dyes Pigm., 2021, 191, 109345.
Wang, L.; Sadler, S.; Cao, T.; Xie, X.; Von Filseck, J. M.; Bakker, E.*
Anal. Chem., 2019, 91, 8973.
(17) Naphthocage: A flexible yet extremely strong binder for singly charged organic cations.
Jia, F.; Hupatz, H.; Yang, L.; Schröder, H. V.; Li, D.; Xin, S.; Lentz, D.; Witte, F.; Xie, X.; Paulus, B.; Schalley, C. A.*, Jiang, W.*
J. Am. Chem. Soc., 2019, 141, 4468.
(16) Surface‐Doped Polystyrene Microsensors Containing Lipophilic Solvatochromic Dye Transducers.
Wang, L.; Xie, X.; Cao, T.; Bosset, J.; Bakker, E.*
Eur. J. Chem., 2018, 24, 1.
(15) Agarose hydrogel containing immobilized pH buffer microemulsion without increasing permselectivity.
Coll Crespi, M.; Crespo, G. A.; Xie, X.; Touilloux, R.; Tercier-Waeber, M.; Bakker, E*.
Talanta, 2018, 177, 191.
(14) Ionophore-based titrimetric detection of alkali metal ions in serum.
Zhai, J.; Xie, X.; Cherubini, T.; Bakker, E.*
ACS Sens., 2017, 2, 606.
(13) Reversible pH-independent optical potassium sensor with lipophilic solvatochromic dye transducer on surface modified microporous nylon.
Wang, L.; Xie, X.; Zhai, J.; Bakker, E.*
Chem. Commun., 2016, 52, 14254.
(12) Ion-selective optode nanospheres as heterogeneous indicator reagents in complexometric titrations.
Zhai, J.; Xie, X.; Bakker, E.*
Anal. Chem., 2015, 87, 2827.
(11) Anion-exchange nanospheres as titration reagents for anionic analytes.
Zhai, J.; Xie, X.; Bakker, E.*
Anal. Chem., 2015, 87, 8347.
Zhai, J.; Xie, X.; Bakker, E.*
Anal. Chem., 2015, 87, 12318.
(9) Ionophore-based ion-exchange emulsions as novel class of complexometric titration reagents.
Zhai, J.; Xie, X.; Bakker, E.*
Chem. Commun., 2014, 50, 12659.
Zhai, J.; Xie, X.; Bakker, E.*
Chimia, 2014, 68, 899.
(7) Chronopotentiometric carbonate detection with all-solid-state ionophore-based electrodes.
Jarolimova, Z.; Crespo, G. A.; Xie, X.; Ghahraman Afshar, M.; Pawlak, M.; Bakker, E.*
Anal. Chem., 2014, 86, 6307.
(6) Environmental sensing of aquatic systems at the University of Geneva.
Bakker, E.* Tercier-Waeber, M. Cherubini, T. Crespi, M. C. Crespo, G. A.; Cuartero, M.; Afshar, M. G.; Jarolimova, Z.; Jeanneret, S.; Mongin, S.; Néel, B.; Pankratova, N.; Touilloux, R.; Xie, X.; Zhai, J.
Chimia, 2014, 68, 772.
(5) Direct alkalinity detection with ion-selective chronopotentiometry.
Afshar, M. G.; Crespo, G. A.; Xie, X.; Bakker, E.*
Anal. Chem., 2014, 86, 6461.
(4) Photoresponsive ion extraction/release systems: dynamic ion optodes for calcium and sodium based on photochromic spiropyran.
Mistlberger, G.*; Xie, X.; Pawlak, M.; Crespo, G. A.; Bakker, E.*
Anal. Chem., 2013, 85, 2983.
(3) Modern chemical ion sensor concepts based on electrochemically and optically triggered phase transfer.
Bakker, E.*; Grygolowicz-Pawlak, E.; Xie, X.; Mistlberger, G.; Crespo, G.; Afshar, M.; Néel, B.; Shvarev, A.
Anal. Chem., 2012, 66, 479.
(2) Photodynamic ion sensor systems with spiropyran: photoactivated acidity changes in plasticized poly (vinyl chloride).
Mistlberger, G.; Crespo, G. A.; Xie, X.; Bakker, E.*
Chem. Commun., 2012, 48, 5662.
(1) Advancing membrane electrodes and optical ion sensors.
Bakker, E.*; Crespo, G.; Grygolowicz-Pawlak, E.; Mistlberger, G.; Pawlak, M.; Xie, X.
Chimia, 2011, 65, 141.